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ABSTRACT 
In 1982, Smith and Hutton published comparative results of several different convection-diffusion schemes 
applied to a specially devised test problem involving near-discontinuities and strong streamline curvature. 
First-order methods showed significant artificial diffusion, whereas higher-order methods gave less smearing 
but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious 
than unphysical smearing, the intervening period has seen a rise in popularity of low-order artificially 
diffusive schemes, especially in the numerical heat-transfer industry. This paper presents an alternative 
strategy of using non-artificially diffusive higher-order methods, while maintaining strictly monotonic 
transitions through the use of simple flux-limiter constraints. Limited third-order upwinding is usually 
found to be the most cost-effective basic convection scheme. Tighter resolution of discontinuities can be 
obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local 
regions, as needed. 

KEYWORDS Smith-Hutton problem Highly convective flow ULTRA-SHARP QUICK Non-oscillatory 
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INTRODUCTION 

In a well-known paper published in 1982, Smith and Hutton presented results of several authors' 
attempts to numerically solve a specially devised test problem involving streamline curvature 
typical of recirculating flows and steep variations in the transported scalar1. Most schemes were 
able to handle the diffusion-dominated low-Péclet-number regime adequately; but in the 
important high-convection regime, Smith and Hutton concluded that convection modelling 
'remains the art of compromise between diffusive and oscillatory errors.' In the intervening 
period, it seems that artificially diffusive low-order (blended first/second-order) convection-
diffusion schemes, such as Patankar's 'power-law difference scheme' (PLDS)2 , have become 
more popular than higher-order potentially oscillatory methods such as the third-order QUICK 
scheme (Quadratic Upstream Interpolation for Convective Kinematics)3. Perhaps this is because 
the overshoot (or undershoot) problems associated with higher-order methods can lead to 
obviously unphysical results such as locally negative densities or turbulence kinetic energy, for 
example4. But the low-order methods' results are also usually highly unphysical—although 
perhaps not always obviously so. 

It is not merely a matter of first-order-based methods being somewhat less accurate than 
higher-order techniques; a much more important point is that such methods are often not even 
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attempting to solve the original physical problem. Convection-diffusion schemes that revert to 
first-order upwinding for convection (while physical diffusion is ignored) under (even only 
moderately) high-convection conditions achieve (plausible looking) non-oscillatory results by 
replacing the high-convection physical problem with an (anisotropic) artificially diffuse 
low-convection numerical problem. Blended first/second-order schemes of this type, such as 
Patankar's PLDS (or the earlier first/second-order-switching 'Hybrid' method of Spalding5) 
have actually gained in popularity in recent years, especially in the numerical convective 
heat-transfer industry6. Both PLDS and Hybrid are inexpensive approximations to the so-called 
exponential difference schemes (EDS)7, first described by Allen and Southwell8 (and 
independently 'rediscovered' several times in the intervening period). 

It should be stressed that EDS is designed to give the exact solution to a very specific 
convection-diffusion problem: steady, one-dimensional, source-free, constant-coefficient 
convection and diffusion of a scalar between specified upstream and downstream boundary 
conditions. Hybrid and (particularly) PLDS solve this problem quite accurately and 
inexpensively. But, as pointed out by Raithby9 over fifteen years ago, if any of these (rather 
restrictive) conditions is relaxed, the use of EDS (or various approximations such as Hybrid or 
PLDS) may result in very serious unphysical consequences. Least troublesome is the 
generalization to variable coefficients and non-linearity (provided the other restrictions are 
maintained). EDS-based methods are best when used in steady quasi-one-dimensional situations 
(without strong source terms), such as unseparated boundary-layers10 or flow in pipes or 
channels11. In such cases, the typical physical balance is between grid-aligned stream-wise 
convection (using first-order upwinding) and transverse physical diffusion (using second-order 
central differencing). Introduction of source terms can lead to significant error3,12. Unsteady 
one-dimensional simulations are notoriously artificially diffusive13, and unsteady multidimen
sional results are pitifully inadequate14; for this reason, first-order methods are not usually used 
for transient calculations. 

But by far the most serious misapplication of EDS-based methods is to steady flow oblique 
or skew to the grid. In such cases, as shown by deVahl Davis and Mallinson15 more than fifteen 
years ago, anisotropic 'cross-wind' artificial numerical (or 'false') diffusion is introduced, 
proportional to the sine of twice the flow-to-grid angle, the grid mesh-size, and the absolute 
convecting velocity. Clearly, under high-convection conditions (typical of practical problems), 
the artificial cross-wind diffusion could be extremely large, unless the flow is virtually aligned 
with one of the grid coordinates. This has been verified in a number of simulations9,16-19. It 
should also be noted that EDS-based schemes either switch-off (Hybrid) or totally suppress 
(PLDS and EDS) physical diffusivity and viscosity under such conditions19. This means, in 
particular, that a typical engineering calculation using sophisticated and expensive multiple 
turbulence equations is, in fact, using the turbulence model merely as a diagnostic to switch off 
its own contributions to the governing conservation and turbulence equations! This perhaps 
explains why such methods are often rather insensitive to the particular form of the turbulence 
model being used20. 

The usual 'justification' for using Hybrid or PLDS for flows oblique or skew to the grid seems 
to be based on grid-refinement studies; i.e., the grid is refined to a point where the results do 
not seem to be changing very much21. But, for first-order methods, as shown later, the approach 
to true grid-independence is a notoriously slow process. For EDS-based methods, one cannot 
claim reasonable accuracy (or-proper use of the turbulence model, for example) until the grid 
is refined to a point where the component grid Péclet (or Reynolds) numbers are everywhere 
0 (1) or less—in which case, Hybrid and PLDS are operating as classical second-order central 
differencing (so that the switching or blending strategy is not needed). The massive grid 
refinement (and concomitant expense) that this would call for under high-convection conditions 
is clearly impracticable. Because of relative algorithmic simplicity, low expense (per grid-point 
calculation), strong convergence properties, inherent monotonicity, and availability in 
well-known CFD codes such as TEACH22 (and its descendants) and some commercial CFD 
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packages23, Hybrid and PLDS remain very popular, especially in the numerical heat-transfer 
industry24. But, in the authors' opinion, in light of the above remarks, Hybrid or PLDS (or 
other first-order or exponential-based schemes) should not be used tor practical calculations. 

There is clearly a strong need for a conceptually simple (and computationally inexpensive) 
convection scheme giving highly accurate non-artificially diffusive and non-oscillatory results 
on practical grids under high-convection conditions; i.e., for grid Péclet (or Reynolds) numbers 
arbitrarily large. The same scheme should, of course, be able to handle the low-Péclet-number 
diffusion-dominated regime, as well. As will be shown in this paper, these apparently conflicting 
requirements are not incompatible. Third-order upwinding is the lowest-order convection scheme 
for which the leading truncation error is dissipative (involving even-order spatial derivatives) 
but not 'diffusive' (i.e., second-order derivatives)—by definition, leading truncation error in this 
case involves fourth-order spatial derivatives and, therefore, does not corrupt physical diffusion. 
As is well known, however, third-order upwinding in its basic form can give rise to unphysical 
overshoots or undershoots near regions involving rapid changes in the transported 
variable3-4'18-19. 

But, as shown later, it is a relatively simple matter to incorporate universal limiter constraints 
(applicable to any order of accuracy) giving tight monotonic resolution of near-discontinuities 
without corrupting the accuracy of the underlying scheme18,19. This universal limiter for tight 
resolution and accuracy implemented via a simple high-accuracy resolution program constitutes 
the ULTRA-SHARP strategy for high-convection modelling. The recommended method uses 
limited third-order upwinding (ULTRA-QUICK) as the basic convection-diffusion scheme; 
then, in local regions requiring even higher-order resolution, the algorithm automatically 
branches to a limited higher-order scheme (such as ULTRA-5th or ULTRA-7th upwind, 
described later) using adaptive stencil expansion, locally, controlled by a simple non-smoothness 
monitor. In terms of achieving a desired accuracy (compared with a known exact solution, for 
example), this strategy is optimal in terms of requiring the lowest overall computer cost. In 
other words, although low-order methods are less expensive per grid point, they require an 
exorbitantly fine grid (and, therefore, a very high total cost) to achieve a prescribed accuracy. 
By contrast, the higher cost (per grid point) of very high-order methods used globally is not 
completely offset by the lower cost of a concomitantly coarser grid. Somewhere in between these 
extremes, there is an optimal order giving best computational efficiency25 (i.e., lowest total cost 
for a prescribed accuracy, or lowest error for a prescribed computational budget). 

In the following sections the specifications of the Smith-Hutton test problem are briefly 
reviewed. Then, for reference, results are shown for a number of well-known convection-
diffusion schemes; in particular: PLDS (representative of exponential-based schemes), 
second-order upwinding, and third-order upwinding (QUICK), using a conservative 
control-volume time-marching formulation in each case. Fifth- and seventh-order upwinding 
are also briefly discussed; as is typical of unlimited higher-order schemes, tighter resolution is 
offset by stronger oscillations. The concept of the universal limiter, based on normalized variables, 
is then briefly reviewed. Results are shown for limited third-order (ULTRA-QUICK) and an 
ULTRA-3rd/5th/7th-order scheme using local adaptive stencil expansion. Finally, a 
cost-effectiveness study shows the optimality of the third-order-based ULTRA-SHARP schemes. 

THE SMITH-HUTTON TEST PROBLEM 
The two-dimensional test problem devised by Smith and Hutton is concerned with steady-state 
convection and diffusion of a scalar field such as temperature, T, for example, in a particular 
prescribed velocity field, v(x, y), with a known constant diffusivity, D. The non-dimensional 
governing equation is: 
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introducing the (macroscopic) Péclet number: 

using appropriate reference velocity and length scales. The flow domain considered is a rectangle: 
— 1≤x ≤ 1 , 0 ≤ y ≤ 1 . And the velocity field is given by: 

and 

corresponding to a streamfunction: 

Figure 1 shows the streamline pattern for this flow-field. 
The inlet temperature profile is specified as 

for y = 0 and -1 ≤ x ≤ 0, where a is a transition-steepness parameter (e.g., a large α-value 
implies a steep transition near x = -0.5). A typical profile is also shown in Figure 1. For 
x = -1, the left-hand boundary condition becomes: 

This is used as the boundary condition along the boundary streamline Ψb = 0; i.e., at x = ±1 
(for 0 ≤ y ≤ 1) and at y = 1 (for - 1 ≤ x ≤ 1). For a greater than about 3, this means that the 
boundary temperature is essentially zero, whereas the top of the inlet profile is very close to 2 
as x →0. Smith and Hutton proposed α = 10 as representative of a relatively sharp transition. 
In the present paper, two other values of a are used: α = 100 (representative of a very sharp 
transition) and a = 5 (representing a relatively smooth transition). Note that no physical 
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boundary conditions are specified at the outlet boundary, y = 0 ( 0 ≤ x ≤ l ) . Numerical 
boundary conditions equivalent to: 

are described below. 
In the case of purely convective flow, Pé = ∞, the exact solution is easily obtained, since 

T = const. along streamlines; i.e., T = T(Ψ). For example, at the inlet, 

so, throughout the flow domain when there is no diffusion, 

using (5). In particular, this gives an outlet profile as the mirror-image of the inlet profile: 

for y = 0 and 0 < x ≤ 1. Figure 2 shows a three-dimensional portrayal of (10) on a 40 × 20 
uniform mesh (41 x 21 grid-points, with ∆x = ∆y). In Figure 2a, α = 100; whereas in Figure 
2b, α = 5. 

Figure 3 shows portions of a typical staggered mesh used in the present analysis. Note that 
T-nodes are placed at boundaries. Boundary nodes shown as dots within squares correspond 

to specified boundary conditions; solid dots represent interior computed T-nodes; exterior 
pseudo-T-nodes (triangles) are also shown for use with higher order methods. Hollow circles 
represent Ψ-nodes; these occur at the corners of temperature control-volume cells. This is shown 
in more detail in Figure 4. The staggered grid is a convenient arrangement, since average cell-face 
convecting velocities are then available by simple subtraction of stream-function values; e.g., 
referring to Figure 4, the average left-face convecting velocity is: 
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so that the corresponding average left-face normal Courant number component is: 

with an analogous formula for the bottom face. 
Computation of interior node values of T follows a simple time-marching procedure. One 

first computes and stores the left and bottom face fluxes based on estimated face-values and 
normal gradients (peculiar to a given numerical interpolation scheme): 

and 

introducing local normal component cell face Péclet numbers: 

and 

The new values of T are then updated by a simple overwrite assignment statement, 

where flux conservation has been observed at each face. This is repeated until a converged steady 
state has been achieved, at which time all fluxes are in balance so that the update equation no 
longer changes the value of T(i,j). 

The treatment of the outflow numerical boundary condition is shown in Figure 5. Assume 
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that T(y) follows a parabola near the outlet for y≥ 0, with three conditions 

and 

Then, it is not hard to show that the corresponding value of T at the boundary is: 

The corresponding pseudonode values of T-1 and T-2 (used for fifth- and seventh-order 
upwinding) are taken to be simply: 

as shown in the Figure. Pseudonode values outside of the other boundaries are obtained by 
extrapolation (to an order consistent with the interior flux calculation) normal to the boundary, 
using the local physical boundary condition. 

EXPONENTIAL-BASED SCHEMES 

Exponential-based convection-diffusion schemes were first introduced into computational fluid 
dynamics by Allen and Southwell8, and have been 'rediscovered' in various equivalent or 
approximate formulations by several people in the past thirty-seven years. Spalding's Hybrid 
scheme5, Patankar's PLDS2, and the algebraic approximation of Raithby and Schneider7 can 
be interpreted as various levels of approximation to the exponential differencing scheme (EDS). 
It is fairly easy to show19 that EDS is equivalent to using second-order central differencing for 
both convective and diffusive fluxes while replacing the actual grid Péclet (or Reynolds) number, 
P∆, with an effective value, P*∆, that is itself a function of the physical P∆. The functional 
relationship is: 

Spalding's Hybrid scheme can be interpreted as a very rough approximation to this, given by: 

Patankar's power-law difference scheme represents a much more accurate approximation of the 
hyperbolic-tangent function: 

The algebraic formulation of Raithby and Schneider can be interpreted as: 

Note that here, too, for large values of P∆. In fact, for EDS itself, (24), 
(since tanh 3 = 0.995 . . . ) . All three approximations are shown in Figure 6 in relation to the 
hyperbolic-tangent curve. 
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For exponential-based schemes, the left-face flux, for example, is given by second-order central 
formulae for both face-value and normal gradient: 

where PXL* is the effective local x-component grid Péclet number at the left face, given by (24) 
or its approximation. Note that for PXL* = 2, the flux becomes 

or 

This, of course, corresponds to first-order upwinding for convection, with physical diffusion 
(computed but) ignored. This is what occurs in the Hybrid scheme for P∆ > 2, and in the other 
schemes (including EDS) for P∆ greater than about 6, as seen in Figure 6. 

Figure 7 shows 40 × 20 PLDS results for Pé = ∞; in this case the scheme is operating 
everywhere as first-order upwinding. The error reported in this and subsequent Figure captions 
is computed using 

where the summation is over all interior grid-points plus the outlet boundary, and N is the total 
number of grid-points involved, excluding pseudonodes (i.e., N = 21 × 11,41 × 21,or 81× 41). 

By comparison with Figure 2, the PLDS simulation is seen to generate very artificially diffusive 
results. This is typical of exponential-based schemes. Figure 8 gives inlet and outlet profiles using 
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a = 100 for Pé = ∞, 500, and 10, showing computed solutions on 20 × 10,40 × 20, and 80 × 40 
grids in each case, using PLDS. The reference finite-Péclet-number results have been obtained 
using the ULTRA-3/5/7 upwind scheme (described later) on a very fine (160 × 80) grid. For 
the larger-Pé cases, the gross artificial diffusion of the exponential-based scheme is clear, 
indicating why such schemes should not be used for practical calculations. In the case of Pé = 10, 
local grid Péclet numbers are small and the scheme is equivalent to second-order central 
differencing. In this case, of course, there is no need for the blending (or switching, in the case 
of Hybrid) strategy to be used, as classical second-order central-differencing gives quite accurate 
and stable results, and can be made to converge very rapidly by using a deferred-correction 
technique26,27. 

SECOND-ORDER UPWINDING 

When second-order upwinding is used for convection, it is conventional to use second-order 
central differencing for diffusion25. In this case, the left-face flux, for example, is given by: 

where the left-face convected value is: 

or 

Similar formulae are easily obtained for the bottom-face flux. Equations (33) and (34) can be 
combined into a single form valid for positive and negative convecting velocities by writing: 

defining the (upwind-weighted) 'normal curvature' at the left face as: 

where (suppressing the j-index, for convenience) the average (symmetric) second-difference 
across the left face is: 
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and the third-difference across the face is: 

The infinite-Pé results for second-order upwinding are shown in Figure 9—as usual, for 
a = 100 and 5. In this case, the smooth-inlet-transition results are quite good, with only a little 
numerical spreading and a very slight overshoot near the outlet; but note the significant 
overshoots and undershoots in the sharp-transition case. Figure 10 shows grid-dependence results 
for Pé = ∞, 500, and 10, for α = 100. 

THIRD-ORDER UPWINDING (QUICK) 

The two-dimensional QUICK scheme is the canonical third-order-upwind scheme for 
steady-state flow4. In this case, the left-face flux, for example, has the same form as (32); however, 
for consistency, the convected face-value includes both normal and transverse curvature effects, 
and the normal-curvature coefficient is much smaller than that shown in (35). Specifically, the 
QUICK left-face value is given by: 

where CURVNL is given by (36) and the upwind-weighted transverse-curvature term is: 

or 
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Note that, consistent with bi-quadratic interpolation in the vicinity of the left face, the diffusive 
flux is identical to that obtained by central-differencing4. 

The QUICK results for Pé = ∞ are shown in Figure 11. The smooth-transition case is very 
well modelled; but, as with second-order upwinding, overshoots and undershoots occur in the 
sharp-transition simulation, although the computed transition itself is noticeably sharper in this 
case. Grid-dependence results are seen in Figure 12. 

FIFTH- AND SEVENTH-ORDER UPWINDING 

The fifth-order upwind algorithm used in this paper again takes the form of (32), but in this 
case, the recommended formula for the face-value is: 

where (again suppressing j's for convenience) the upwind-weighted fourth difference is: 

or 

Three points should be mentioned : 
(i) Higher-order terms are not used in the diffusive flux. This is appropriate because, when 

diffusion is large (small Pé), modelled profiles are smooth and the second-order form is entirely 
adequate; whereas, under high-convection conditions, the form of the small diffusion terms is 
not very important. 
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(ii) Higher-order transverse terms are not used in the convective flux. Although the third-order 
transverse curvature term is significant, numerical experimentation has shown that higher-order 
transverse terms have an almost negligible effect on results; but inclusion would add significantly 
to the cost of the calculation. 

(iii) The coefficient of the normal-curvature term (1/6, rather than the theoretical value of 
1/8) has been found to give slightly more accurate results in cases of scalar convection and 
diffusion, where exact solutions are available19. This was not found to be the case with third-order 
upwinding—where 1/8 seems to be optimal in all cases tested. 

Figure 13 gives the fifth-order results for Pé = ∞. As perhaps expected, the large-α transition 
is sharper (than third-order) but generates significantly more overshoots, undershoots, and 
secondary ripples. The smooth transition is graphically indistinguishable from the exact result. 
Grid-dependence studies are again predictable and need not be shown here. Higher (for example, 
seventh) order upwinding merely accentuates the trends seen with fifth-order. 

The seventh-order formula used in this study takes the form: 

where (suppressing j's, as usual) the average (symmetric) fourth-difference across the left-face is: 

and SIXTHL is the upwind-weighted sixth-difference: 

for CXL > 0. All indexes in SIXTHL are increased by 1 for CXL < 0. 

UNIVERSAL LIMITER 
The universal limiter is most easily described in terms of normalized variables. Let Tf represent 
the value of the convected scalar at any control-volume (CV) face; call the adjacent downstream 
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node-value (in a direction normal to the face) TD, the adjacent upstream node-value Tc, and 
the next upstream node-value Tu. Figure 14 sketches the definition of these terms; as seen, node 
C lies between nodes U and D. Note, however, that the nodes involved are dependent on the 
sign of the normal convecting velocity component, un, at the CV face. Now define, anywhere in 
the vicinity of the face, a normalized variable: 

In particular, 

and 

Note also that whereas 
The universal limiter can be portrayed in the normalized-variable plane18,19. Figure 

15 shows the constraint boundaries. The basic idea behind the universal limiter is that, for 
(i.e., for locally monotonic node-values), should lie between upstream 

and downstream normalized node-values (otherwise, interpolative monotonicity would 
be destroyed). It is also important that not lie in the second quadrant as this would allow 
oscillatory nodal behaviour18. The steep (but finite) slope, OB, is included to avoid indeterminacy 
near . Some flexibility is allowed in the non-monotonic ranges ; the 
strategy shown is one of the simplest possibilities. Note that first-order upwinding 

everywhere) marginally satisfies the limiter constraints. Clearly, this is the only 'linear' 
scheme (i.e., is a linear function of to give inherently monotonic results, as pointed out 
by Godunov28 many years ago. 

Use of the universal limiter proceeds as follows: 
(i) First compute some (in general, high-order) estimate for the face value, Tf , and find the 

corresponding normalized values of and 
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(ii) If the point satisfies the limiter constraints, proceed to step (iii); if not, reset 
to the nearest limiter-constraint at the same value, 

(iii) Reconstruct the unnormalized face value: 

(iv) Use this value in combination with second-order diffusion in computing the total flux 
at the CV face; as, for example, in (32) for the left face. 

ULTRA-QUICK results 
When the universal limiter (for tight resolution and accuracy) is applied to the QUICK 

scheme (giving ULTRA-QUICK), overshoots and undershoots are automatically suppressed 
without additional smearing of the transition region. This is seen in Figures 16 and 17, which 
should be compared with Figures 11 and 12, and with Figure 2. Note the clean monotonic 
transition in the high-Pé large-α cases, as compared with the unlimited scheme. Smooth-region 
behaviour remains very good, reflecting the uniformly third-order accuracy of the basic algorithm. 

Artificial compression 
Figure 18 portrays a second-order convection scheme in the normalized-variable diagram, 

conforming to universal limiter constraints. The unconstrained portion of the scheme (DCB) 
consists of second-order central-differencing 

and second-order upwinding (CB) for 
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The upper constraint boundary (BA) can be interpreted as first-order downwinding 

This convection scheme has a tendency to introduce negative artificial diffusion into portions 
of simulated profiles. This can (artificially) enhance resolution of near-discontinuities—a 
phenomenon sometimes known as 'artificial compression'. The scheme was originally introduced 
by Roe29 and named 'Ultra-B'; it is related to Roe's better-known 'Super-B' scheme, which is 
also artificially compressive30. In terms of simulating near-discontinuities, Ultra-B is indeed 
quite impressive for a second-order scheme. This is clearly seen in Figure 19a for the infinite-Pé 
sharp-transition case (a = 100); but note the distortion of the initially smooth profile (a = 5) 
in Figure 19b. As the profile is convected downstream, it becomes more and more ramp-like. 
This is due to the negative artificial diffusion inherent in artificially compression schemes. Similar 
artificial steepening effects occur with the finite-Pé simulations, as well. This is serious draw-back 
of artificial-compression methods19. The phenomenon can be avoided by using higher-order 
ULTRA-SHARP techniques, as described in the next section. 

LOCAL ADAPTIVE STENCIL EXPANSION 
Clearly, higher-order monotonic resolution of very sharp transitions could be obtained by using 
ULTRA-5th or ULTRA-7th globally. But in most of the flow domain, such high accuracy (and 
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concomitant cost) is not called for. It is of interest, from a cost-effectiveness viewpoint to construct 
an algorithm that would use ULTRA-QUICK in 'smooth' regions and automatically branch 
to a higher-order scheme locally, as needed. This strategy of local adaptive stencil expansion 
(as opposed to local adaptive grid refinement) is similar in many respects to the so-called 
'p-refinement' technique (as opposed to 'h-refinement') used in some finite element methods31. 
The need for the local higher-order calculation—and correspondingly expanded stencil—can 
be determined by monitoring some suitable 'non-smoothness' parameter. One such quantity 
that comes to mind immediately is the local first-difference (proportional to the normal gradient) 
across a given CV face. For the left face, this would be: 

One also needs to detect local changes in gradient; the symmetrically placed average 
second-difference, defined in (37) for the left face, is suitable for this. 

In smooth regions, both GRADL and CRVAVL will lie below certain pre-assigned thresholds; 
in this case, the basic ULTRA-QUICK algorithm is used. This will take care of the bulk of the 
flow domain since sharp transitions occur in narrow isolated regions, by definition. In fact, small 
curvature is equivalent to in which case the algorithm is automatically acting as an 
unlimited QUICK scheme. If CRVAVL exceeds the first threshold, THC1 (= 0.1 in the present 
study), the algorithm branches to ULTRA-5th locally; if it also exceeds THC2 (=0.7), it 
branches further to ULTRA-7th. If GRADL exceeds THG ( = 0.35), ULTRA-7th is used 
immediately. Clearly, other threshold strategies could be used; the procedure adopted here has 
evolved through computational experimentation over several test problems. It should be noted 
that the threshold constants are dimensional; i.e. a change in scale, for example, would require 
a corresponding change in threshold values. This problem can be avoided by rescaling the 
threshold constants with respect to an anticipated maximum absolute value of the convected 
variable occurring within the flow-field of interest (in the Smith-Hutton problem | T | m a x= 2). 
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Figures 20 and 21 show results for the ULTRA-3rd/5th/7th scheme described above. Clearly, 
these are highly accurate results, even on the coarsest grid. As seen in the next section, the cost 
is only slightly more than the basic ULTRA-QUICK scheme but the cost-effectiveness 
(computational efficiency) is greatly enhanced. 

OPTIMAL COST-EFFECTIVENESS 

When dealing with higher-order convection schemes, one obvious question that comes to mind 
is: is it better (in terms of total cost) to use a low-order scheme on a very fine grid or a 
higher-order scheme on a coarser grid? Low-order schemes are relatively inexpensive per 
grid-point, but (as seen in the cases shown in this paper) require extremely fine grids for 
reasonable accuracy. On the other hand, the added expense (again, per grid-point) of 
very-high-order schemes may not be totally offset by a concomitant coarsening of the grid to 
achieve a given accuracy. To be more precise, assume that a desired level of accuracy has been 
pre-assigned for a problem that has a known exact solution, such as the infinite-Pé Smith-Hutton 
problem. Take any given convection scheme and solve on successively finer and finer grids until 
the desired level of accuracy has been achieved; simultaneously keep note of the CPU time 
(representing cost) at successive grid refinements. Repeat this process with other convection 
schemes. In this way, the cost for a prescribed global accuracy can be assigned to each scheme. 
Alternatively, one could specify an available computational budget and compute the 
corresponding accuracy of each scheme as the grid is refined. 

Figure 22 gives the relevant information for the infinite-Pé Smith-Hutton problem with 
α = 100. In part (a) of the Figure, the error, given by (31), is plotted versus N, on a log-log 
scale, for first-order upwinding, ULTRA-second-order upwinding (equivalent to the 
Chakravarthy-Osher scheme described by Sweby32), ULTRA-QUICK, ULTRA-5th, and 
ULTRA-7th upwind schemes, together with the ULTRA-3rd/5th/7th upwind scheme. Desired 
accuracy is shown by a broken line; for each scheme, the corresponding grid refinement can be 
found by interpolation. This is cross-plotted onto part (b) of the Figure which gives CPU-time 
as a function of N for each scheme. Part (c) of the Figure shows the error incurred by each 
method corresponding to a prescribed CPU-time in part (b). Alternatively, part (d) of the 
Figure gives the CPU-time for each method corresponding to the prescribed error in part (a). 

From these results, one sees immediately that first-order upwinding (or a high-convection 
EDS-based scheme) is extremely inefficient because, although the cost-per-grid-point is low, the 
grid-refinement necessary for the desired accuracy would be extreme. Among the global 
higher-order methods, either ULTRA-QUICK or ULTRA-5th is seen to be optimal, depending 
on specific requirements of cost and accuracy; the 7th-order scheme is somewhat less efficient. 
The most cost-effective strategy of all, though, is to use local adaptive stencil expansion over 
the base third-order scheme. This is because the wider-stencil (more expensive) higher-order 
computation is automatically used very sparingly—only where needed: in isolated narrow 
regions involving a relatively few number of grid points. For flows involving only relatively 
smooth profiles (such as the a = 5 infinite-Pé case), ULTRA-QUICK is again found to be 
optimal; in this case, the higher-order wider stencil is not called for. Similar conclusions have 
been reached with respect to other calculations on scalar and non-linear (Navier-Stokes) 
test-problems (such as the lid-driven cavity)33. 

CONCLUSION 

The Smith-Hutton problem is an excellent test-problem for a numerical convection-diffusion 
scheme, especially in the high-convection regime. Strong streamline curvature and rapid local 
variation of the convected variable represent serious challenges to any numerical scheme. The 
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availability of exact analytical solutions in the infinite-Pé case is very useful for a comparative 
error analysis. By choosing small values of a, the test-problem can be used for simulating 
smooth-function behaviour, as well. The present formulation of the problem uses a staggered 
grid, interleaving streamfunction and scalar nodes. Particular attention is paid to the outflow 
boundary condition, assuring (∂T/∂y)o = 0, consistent with local parabolic behaviour. The 
solution algorithm is based on explicit time-marching until a steady state is reached, although 
ADI tridiagonal solution of the steady equations can also be used19,33. 

Exponential-based schemes such as Spalding's Hybrid5, Patankar's PLDS2, or the algebraic 
approximation of Raithby and Schneider7, all revert to first-order upwinding for convection 
with modelled physical diffusion (computed but) ignored or suppressed wherever the local 
normal component grid Péclet number exceeds 2 (Hybrid) or about 6 (for the other schemes, 
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including EDS itself). For most flows of practical interest, grid Péclet (Reynolds) numbers are 
likely to be far greater than 2 or 6 throughout most of the flow-field; under these conditions, 
exponential-based schemes are functioning as first-order upwinding almost everywhere, with 
physical diffusion switched off. The inherent artificial diffusion of such schemes is clearly evident, 
especially in the large-Pé cases. Slow grid-refinement convergence is also observed; this raises 
serious questions regarding grid-refinement claims made in support of exponential-based schemes. 
Such methods should be viewed as of historical interest only, and should not be used for serious 
practical applications. 

Second-, third-, and higher-order upwind methods share a number of similar properties: as 
the order is increased, transition resolution becomes sharper, but overshoots and undershoots 
become more pronounced, with secondary ripples forming in the case of very-high-order schemes. 
Smooth function and low-Pé performance was seen to be generally very good, with error 
decreasing with order. The two-dimensional third-order (QUICK) scheme introduces 
transverse-curvature terms into the convective fluxes. Other calculations have shown that 
omission of these terms can incur significant error unless the grid is extremely fine33. As used 
in this study, higher-order schemes retain the third-order transverse curvature terms but omit 
higher-order transverse and other cross-difference terms; these are costly, algorithmically 
complex, and seem to have very little effect on the solution. It was also found unnecessary to 
extend diffusion modelling beyond second order. 

The main draw-back of higher-order schemes is the generation of spurious unphysical 
overshoots and undershoots each side of sharp transition regions. This appears to be the main 
reason for a lack of interest in such methods as compared with essentially first-order schemes 
that produce monotonic, albeit extremely artificially diffusive, results. But it is a relatively 
straight-forward task to incorporate monotonizing flux-limiters into higher-order schemes, using 
the concept of a universal limiter. In terms of locally normalized variables, the universal limiter 
diagram is a simple triangular region with linear extensions on each side. When applied to 
higher-order convective fluxes, the universal limiter produces strictly monotonic results without 
introducing artificial diffusion and concomitant numerical spreading of (what should be sharp) 
transition regions. The tightness of the transition resolution increases as the order of the 
underlying scheme is increased. Using a higher-order ULTRA scheme was seen to be a better 
strategy than relying on artificial compression. The negative artificial diffusion inherent in 
second-order artificial-compression methods such as Ultra-B is responsible for extremely tight 
resolution of near-discontinuities; however, as was seen, it tends to distort smooth profiles into 
ramp-like transitions. In a recent paper, Tzanos34 has also solved the Smith-Hutton problem 
using a third-order convection scheme with a simple limiting strategy essentially equivalent to 
ULTRA-QUICK (but without transverse curvature terms). Tzanos' paper also gives formulae 
for a variable (adaptive) grid. The results (for α = 10 and Pé = 1000 or 10) are very similar to 
ULTRA-QUICK results for the same parameter values (slight differences are due to 
transverse-curvature terms and different treatment of numerical boundary conditions). 

Among higher-order ULTRA schemes used globally, ULTRA-QUICK and ULTRA-5th were 
seen to be the best schemes in terms of cost-effectiveness: either lowest cost for a prescribed 
accuracy of lowest error for a prescribed cost, as the grid is refined. Local adaptive stencil 
expansion—using ULTRA-QUICK as the base scheme and automatically expanding the 
computational stencil to a higher-order ULTRA scheme locally (as needed)—was seen to be 
an extremely cost-effective technique, giving between fifth- and seventh-order accuracy for little 
more cost than that of the underlying third-order scheme. Optimal setting of the non-smoothness 
monitor thresholds requires some experimentation for each new problem; but it appears likely 
that a more general strategy will evolve as experience is gained with this new technique. 

The ULTRA-SHARP strategy is ideally suited to steady-state Navier-Stokes calculations, as 
well33. If a turbulence model is used, the physics of the model is faithfully represented. Very 
narrow shear-layers oblique or skew to the grid can be accurately simulated without fear of 
artificial smearing or oscillation. It is a straightforward exercise to extend the conservative 
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finite-volume flux-based algorithms to three dimensions; and because of the high accuracy 
obtainable on very coarse grids, reliable three-dimensional simulations should soon become 
practicable for routine engineering calculations. 

ACKNOWLEDGEMENTS 

Portions of this work were supported by the National Science Foundation under contract 
ECS-8904595. The first author's research was also partially supported by the Institute for 
Computational Mechanics in Propulsion (ICOMP) at the NASA Lewis Research Center under 
Space Act Agreement C-99066-G. 

REFERENCES 

1 Smith, R. M. and Hutton, A. G. The numerical treatment of advection: A performance comparison of current 
methods, Num. Heat Trans., 5, 439-461 (1982) 

2 Patankar, S. V. Numerical Heal Transfer and Fluid Flow, Hemisphere, New York (1980). 
3 Leonard, B. P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation, 

Comp. Meth. Appl. Mech. Eng., 19, 59-98 (1979) 
4 Leonard, B. P. Elliptic systems: Finite difference method IV, Handbook of Numerical Heat Transfer (Eds. W. J. 

Minkowycz et al.), Wiley, New York, pp. 347-378 (1988) 
5 Spalding. D. B. A novel finite difference formulation for differential expressions involving both first and second 

derivatives, Int. J. Num. Meth. Eng., A, 551-559 (1972) 
6 Lewis, R. W. and Morgan, K. (Eds.), Numerical Methods in Thermal Problems, Vol. VI, Pineridge Press, Swansea 

(1989) 
7 Raithby, G. D. and Schneider, G. E. Elliptic systems: Finite-difference method II, Handbook of Numerical Heat 

Transfer (Eds. W. J. Minjowycz et al.), Wiley, New York, pp. 241-294 (1988) 
8 Allen, D. N. de G. and Southwell, R. V. Relaxation methods applied to determine the motion, in two dimensions, 

of a viscous fluid past a fixed cylinder, Q. J. Mech. Appl. Math., 8, 129-145 (1955) 
9 Raithby, G. D. A critical evaluation of upstream differencing applied to problems involving fluid flow, Comp. Meth. 

Appl. Mech. Eng., 9, 75-103 (1976) 
10 Reddy, D. R. and Rubin, S. G. Consistent boundary conditions for reduced Navier-Stokes (RNS) scheme applied 

to three-dimensional viscous flows, J. Fluids Eng., 110, 306-324 (1988) 
11 Hirai, S., Takagi, T. and Matsumoto, M. Predictions of the laminarization phenomena in an axially rotating pipe 

flow, J. Fluid Eng., 110,424-430 (1988) 
12 Leonard, B. P. A consistency check for estimating truncation error due to upstream differencing, Appl. Math. 

Modelling, 2, 239-244 (1978) 
13 Leonard, B. P. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, 

Comp. Meth. Appl. Mech. Eng., 88, 17-74 (1991) 
14 Munz, K.-D. On the numerical dissipation of high resolution schemes for hyperbolic conservation laws, J. Comp. 

Phys., 77, 18-39(1988) 
15 de Vahl Davis, G. and Mallinson, G. D. An evaluation of upwind and central difference approximations by a study 

of recirculating flow, Comp. Fluids, 4, 29-43 (1976) 
16 Leschziner, M. A. Practical evaluation of three finite difference schemes for the computation of steady-state 

recirculating Rows, Comp. Meth. Appl. Mech. Eng., 23, 293-312 (1980) 
17 Huang, P. G., Launder, B. E. and Leschziner, M. A. Discretization of nonlinear convection processes: A broad-range 

comparison of four schemes, Comp. Meth. Appl. Mech. Eng., 48, 1-24 (1985) 
18 Leonard, B. P. Simple high accuracy resolution program for convective modelling of discontinuities, Int. J. Num. 

Meth. Fluids, 8, 1219-1318 (1988) 
19 Leonard, B. P. and Mokhtari, S. Beyond first-order upwinding: The ULTRA-SHARP alternative for non-oscillatory 

steady-state simulation of convection, Int. J. Num. Meth. Eng., 30, 729-766 (1990) 
20 Emmons, H. W. Evaluation committee report, in Proc. 1980-81 AFOSR—HTTM—Stanford Conference on Complex 

Turbulent Flows, Vol. II, pp. 979-986 (1981) 
21 Demuren, A. O. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow, 

NASA TM 105306, ICOMP-91-20; CMOTT-91-09, NASA Lewis Research Center, Cleveland, Ohio (1991) 
22 Gosman, A. D. and Ideriah, F. J. K. TEACH-T: A general computer program for two-dimensional turbulent 

recirculating flows. Fluids Section, Department of Mechanical Engineering, Imperial College, London (1976) 
23 FLUENT, Creare.X, Hanover, NH (1991). 
24 Chung, B. T. F. Personal communication (1992). 



ULTRA-SHARP SOLUTION OF SMITH-HUTTON PROBLEM 427 

25 Fletcher, C. A. J. Computational Techniques for Fluid Dynamics, Vols. I and II, Springer, New York (1988) 
26 Ghia, U., Ghia, K. N. and Shin, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations 

and a multigrid method, J. Comp. Phys., 48, 387-411 (1982) 
27 Hayase, T., Humphrey, J. A. C. and Grief, K. A consistently formulated QUICK scheme for fast and stable convergence 

using finite-volume iterative calculation procedures, J. Comp. Phys., 98, 108-118 (1992) 
28 Godunov, S. K. Finite difference method for numerical computation of discontinuous solutions of the equation of 

fluid dynamics, Matemalik Sbornik, 47, 271-285 (1959) 
29 Roe, P. L. and Baines, M. J. Algorithms for advection and shock problems, Proc. 4th GAMM Conf. Num. Meth. 

Fluid Mech. (Ed. H. Viviand), Vieweg, Germany, pp. 281-290 (1982) 
30 Roe, P. L. Annual Reviews of Fluid Mechanics, Vol. 18 (Eds. M. Van Dyke, J. V. Wehausen and J. L. Lumley), 

Annual Reviews Inc., pp. 337-365 (1986) 
31 Rachowicz, W., Oden, J. T. and Demkowicz, L. Toward a universal h-p adaptive finite-element strategy, Part 3. 

Design of h-p meshes, Comp. Meth. Appl. Mech. Eng., 77, 181-212 (1989) 
32 Sweby, P. K. High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Num. Anal., 

21,995-1011 (1984) 
33 Mokhtari, S. Development and analysis of steady high-resolution non-oscillatory convection schemes using 

higher-order upwinding, PhD Dissertation, University of Akron (1991) 
34 Tzanos, C. P. Central difference-like approximation for the solution of the convection-diffusion equation, Num. Heat 

Trans. (B), 17, 97-112 (1990) 


